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ABSTRACT:
Voice and speech production change with age, which can lead to potential communication challenges. This study

explored the use of Landmark-based analysis of speech (LMBAS), a knowledge-based speech analysis algorithm

based on Stevens’ Landmark Theory, to describe age-related changes in adult speakers. The speech samples ana-

lyzed were sourced from the University of Florida Aging Voice Database, which included recordings of 16 sentences

from the Speech Perception in Noise test of Bilger, Rzcezkowski, Nuetzel, and Rabinowitz [J. Acoust. Soc. Am. 65,

S98–S98 (1979)] and Bilger, Nuetzel, Rabinowitz, and Rzeczkowski [J. Speech. Lang. Hear. Res. 27, 32–84

(1984)]. These sentences were read in quiet environments by 50 young, 50 middle-aged, and 50 older American

English speakers, with an equal distribution of sexes. Acoustic landmarks, specifically, glottal, bursts, and syllabicity

landmarks, were extracted using SpeechMark
VR

, MATLAB Toolbox version 1.1.2. The results showed significant age

effect on glottal and burst landmarks. Furthermore, the sex effect was significant for burst and syllabicity landmarks.

While the results of LMBAS suggest its potential in detecting age-related changes in speech, increase in syllabicity

landmarks with age was unexpected. This finding may suggest the need for further refinement and adjustment of this

analytical approach VC 2024 Acoustical Society of America. https://doi.org/10.1121/10.0028175
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I. INTRODUCTION

Acoustic analysis has long been a core approach in

speech science, offering invaluable insights into human

speech production and perception (Kent and Kim, 2008;

Stevens, 2000). Traditional approaches have primarily

focused on describing the physical characteristics of speech

signals, such as frequency, amplitude, and duration. While

invaluable, currently available analytical tools have limita-

tions, especially in terms of labor intensity, which have hin-

dered its incorporation into clinical practice. In response to

these challenges, there is a growing demand for an auto-

mated approach capable of not only capturing these basic

acoustic properties but also delineating speech differences

with greater specificity and efficiency. Systems developed

based on the Landmark theory of speech have shown con-

siderable promise in meeting this demand. These systems

have demonstrated their utility in characterizing speech var-

iations secondary to voice and speech disorders (Chenausky

et al., 2011; Ishikawa et al., 2020; Liu and Chen, 2021;

Speights Atkins and MacAuslan, 2022; Suthar et al., 2022).

Another critical factor influencing voice and speech produc-

tion is aging, yet the extent to which landmark-based sys-

tems can account for these age-related differences remains

underexplored. Distinguishing speech changes inherent to

the normal aging process from those indicative of pathologi-

cal conditions is essential for a clinical tool. Thus, under-

standing how a landmark-based system describes age-

related changes in speech is a crucial step toward further

developing a system specifically tailored for this purpose.

The landmark theory of speech, proposed by Kenneth

Stevens (Stevens, 1981, 2002), describes speech perception

through the lens of articulatory–acoustic and acoustic–per-

ceptual mapping. Central to this theory is the concept of

“landmarks,” the temporal positions characterized by abrupt

changes or extrema in the speech spectrum elicited by

speech articulation. The theory posits that these landmarks

serve as perceptual anchors for identifying the distinctive

features of phonemes (Chomsky and Halle, 1968), providing

the auditory system salient acoustic cues crucial for decod-

ing the phonetic structure of speech (Slifka et al., 2004).

The Landmark theory has provided a framework for

knowledge-based, automatic speech analysis systems

(Boyce et al., 2010, 2012; Howitt, 2000; Juneja and Espy-

Wilson, 2008; Liu, 1996; Shi et al., 2021).

The Landmark-based speech analysis systems typically

extract the landmarks in a two-step process (Liu, 1996). The

first phase involves marking the moments where abrupt

changes in the speech signal occur. The second phase charac-

terizes the acoustic patterns of these detected landmarks and

classifies them into specific classes of landmarks based on the

acoustic features corresponding to particular phonetic features.
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In SpeechMark
VR

(Lexington, MA), a suite of software tools

designed for research use (Boyce et al., 2010, 2012), land-

marks are divided into two primary classes: peak and abrupt.

Peak landmarks are identified at points in speech where there

is a peak in harmonic power or fractal dimension, representing

the centers of vowels or fricated intervals. The abrupt land-

marks are identified at moments in the speech signal where

there is rapid change across multiple frequency ranges and

time scales. For instance, an abrupt increase in amplitude

above 3 kHz can indicate the onset of bursts, while an abrupt

decrease can indicate the end of frication. The abrupt land-

marks include glottal onset and offset [þ/�g], burst onset and

offset [þ/�b], syllabic onset and offset [þ/�s], voiced frica-

tion onset and offset [þ/�v], unvoiced frication onset and off-

set [þ/�f]. The detailed acoustic rules for the detection of

each landmark type are described in Table I. An example of

landmark analysis by SpeechMark
VR

is shown in Fig. 1.

SpeechMark
VR

has been employed in research to detect

small, non-lexical differences in speech production, such as

speech differences associated with speaking styles (Boyce

et al., 2013; Ishikawa et al., 2023), sleep-deprived condi-

tions (Boyce et al., 2011), Parkinson’s disease (Chenausky

et al., 2011), dysphonia (Ishikawa et al., 2020), dysarthria

(Liu and Chen, 2021), and speech sound disorders (Speights

Atkins and MacAuslan, 2022; Suthar et al., 2022). In normal

speech, Ishikawa et al. (2017) analyzed the first 12 s of the

“Rainbow Passage” (Fairbanks, 1960) from 15 adult females

with a mean age of 37.8 years and 21 adult males with a

mean age of 38.81 years. The results showed that 94% of all

landmarks were primarily glottal, burst, and syllabic land-

marks and highlighted the importance of sex effects on land-

mark analysis (Ishikawa et al., 2017). This study was the

first to characterize landmark expression in normal adult

speakers and noted that the findings should be examined in a

larger sample size, specifically for the effect of sex.

Landmark-based analysis has also been used in the study of

disordered speech that affects overall speech intelligibility.

In their study on dysphonic speech, Ishikawa et al. (2020)

extracted syllabic, glottal, and burst landmarks from the first

sentence of the “Rainbow Passage” in 36 speakers with dys-

phonia and compared them to 33 speakers without dyspho-

nia. This preliminary investigation reported that the average

count of all landmarks was significantly greater in normal

speech, and that dysphonic speech had more glottal and

burst landmarks and fewer syllabic landmarks than normal

speech. Most recently, Ishikawa et al. (2023) demonstrated

the feasibility of differentiating conversational and clear

speech in 27 individuals with muscle tension dysphonia.

Specifically, clear speech resulted in a significantly greater

number of burst onset landmarks and longer durations

between glottal landmarks compared to casual speech; how-

ever, the number of syllabic landmarks did not significantly

differ between clear and casual speech.

Landmark-based analysis is emerging as a potential

approach for detection of disorders beyond dysphonia. Liu

and Chen (2021) explored its application among adults

with cerebral palsy (CP), analyzing 210 sentences from the

TORGO database (https://www.cs.toronto.edu/~complingweb/

data/TORGO/torgo.html, https://link.springer.com/article/10.1007/

s10579-011-9145-0). Their study, involving 14 participants—

seven with CP and seven typically developing adults matched

for age and sex—revealed that those with CP produced a signif-

icantly higher number of landmark features. In the pediatric

domain, Speights Atkins and MacAuslan (2022) assessed the

SpeechMark
VR

Automated Syllabic Cluster detection system’s

capability in identifying speech impairments through continu-

ous speech samples from 4-year-old children. Their findings

highlighted variations in speech rate and syllabic cluster

TABLE I. The acoustic rules for the detection of each landmark type. Reproduced with permission from Ishikawa et al., J. Acoust. Soc. Am. 142,

EL441–EL447 (2017). Copyright 2017 Acoustical Society of America.

Symbol Landmark type Rule

þg Glottal onset The beginning of sustained vocal fold vibration, i.e., of periodicity or of power and spectral slope similar

to that of a nearby segment of sustained periodicity

�g Glottal offset End of sustained vocal fold vibration

þb Burst onset At least three of five frequency bands show simultaneous power increases of at least 6 dB in both the

finely smoothed and the coarsely smoothed contours, in an unvoiced segment (not between þg and the

next g)

�b Burst offset At least three of five frequency bands show simultaneous power decreases of at least 6 dB in both the

finely smoothed and the coarsely smoothed contours, in an unvoiced segment

þs Syllabic onset At least three of five frequency bands show simultaneous power increases of at least 6 dB in both the

finely smoothed and the coarsely smoothed contours, in a voiced segment (between þg and the next g)

�s Syllabic offset At least three of five frequency bands show simultaneous power decreases of at least 6 dB in both the

finely smoothed and the coarsely smoothed contours, in a voiced segment

þf Frication onset At least three of five frequency bands show simultaneous power increases at high frequencies and

decreases at low frequencies (unvoiced segment)

�f Frication offset At least three of five frequency bands show simultaneous power decreases at high frequencies and

increases at low frequencies (unvoiced segment)

þv Voiced frication onset At least three of five frequency bands show simultaneous power increases at high frequencies and

decreases at low frequencies (voiced segment)

�v Voiced frication offset At least three of five frequency bands show simultaneous power decreases at high frequencies and

increases at low frequencies (voiced segment)
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production between typically developing children and those

with speech compromise, suggesting the system’s potential

for early detection of speech impairments. Expanding the

scope of landmark analysis, Suthar et al. (2022) integrated

machine learning techniques to enhance the detection of

speech disorders in children. By employing both traditional

and novel knowledge-based landmark features, their study

showed the promise for increasing accuracy and efficiency of

automatic screening tools. Collectively, these studies demon-

strate the versatility and potential of landmark-based analysis

in advancing our understanding and detection of speech pro-

duction differences across different age groups and

conditions.

Aging significantly affects voice and speech production,

with changes manifesting as early as the fourth or fifth

decade of life (Hixon et al., 2014; Ramig et al., 2001).

These age-related alterations are attributed to structural,

physiological, and neurological transformations affecting

not only the cardiovascular, skeletal, and muscular systems,

but also key speech subsystems, such as respiration, phona-

tion, and articulation (Hoit and Hixon, 1987; Huber and

Stathopoulos, 2015; Awan, 2006; Watts et al., 2015; Liss

et al., 1990). Acoustically, the effect of aging on speech pro-

duction has been documented across various languages as

changes in speech and articulation rates, pause frequency

and durations, and the acoustic properties of vowels and

consonants (B�ona, 2014; Br€uckl and Sendlmeier, 2003;

Eichhorn et al., 2018; Jacewicz et al., 2010; Rastatter et al.,
1997). For instance, a general decrease in speech rate occurs

with advancing age, with variations observed based on the

speaker’s sex (Jacewicz et al., 2009; Verhoeven et al.,
2004). Additionally, for English speakers, vowel centraliza-

tion and the lowering of vowel formants have been reported,

alongside greater variability in consonant production, partic-

ularly in voice onset time (VOT) (Morris and Brown, 1994;

Sweeting and Baken, 1982; Xue and Hao, 2003). The impor-

tance of considering the sex difference in aging speech has

been suggested by a study that examined formant frequen-

cies and VOT of younger and older speakers (Torre and

Barlow, 2009). Aging also affects the larynx. One of the

common anatomical changes is atrophy of the vocal fold tis-

sue, resulting in bowing and incomplete glottal closure.

These physiological changes lead to a voice that may sound

breathy, rough, or strained due to altered glottal flow

dynamics. Acoustic manifestations of these laryngeal

changes are often captured through measures, such as funda-

mental frequency, intensity, jitter, shimmer, harmonics-to-

noise ratio, cepstral peak prominence, and spectral features,

associated with breathy voice quality (Ramig, 1983;

Linville, 2002; Buckley et al., 2023; Kent et al., 2023).

Current literature employing conventional acoustic

measures has demonstrated discernible effects of aging on

voice and speech production. Previous studies utilizing

speech-based landmarks have illustrated their efficacy in

delineating changes in voice and articulation. Leveraging

this premise, our study assesses the efficacy of landmarks in

discerning age-related alterations within a substantial data-

set. Additionally, given the balanced distribution of sexes

within our dataset, we also explore potential sex-based

effects.

II. RESEARCH QUESTIONS AND HYPOTHESES

The central research question of the current study is:

“Do speakers’ age and sex affect the expression of land-

marks, specifically the count of glottal, burst, and syllabicity

landmarks?” Aging is anticipated to impact glottal function,

FIG. 1. (Color online) An example of LMBAS by SpeechMark
VR

.
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potentially leading to observable changes in both glottal and

syllabicity landmarks. Given that vocal fold tissue atrophy

can disrupt the periodicity of vibration—wherein glottal

landmarks denote the onset and offset of periodic

moments—such disruption is hypothesized to result in an

increased count of glottal landmarks.

The atrophy may also enlarge the glottal gap, introduc-

ing greater noise and reduce harmonicity in the acoustic

voice signal. This alteration could consequently decrease

the acoustic moments that qualify for syllabicity landmarks,

as their detection is contingent on energy differences across

various spectral bands in voiced segments. Additionally, the

phenomenon of vowel centralization, which reduces the

contrast in formant frequencies across vowels, might dimin-

ish the likelihood of syllabicity landmark detection, as the

distinction between vowel sounds becomes less pronounced.

Hence, we hypothesize a decrease in the count of syllabicity

landmarks with age due to these physiological changes.

The noise resulting from vocal fold atrophy may mimic

consonantal sounds, potentially leading to an increase in

acoustic moments that qualify for burst landmarks in older

adults, akin to patterns observed in dysphonic speech

(Ishikawa et al., 2020). Moreover, the documented general

decrease in speech rate with advancing age (Verhoeven

et al., 2004; Jacewicz et al., 2009) might afford older speak-

ers more time to articulate consonants distinctly. To support

this notion, Narayan (2023) demonstrated that decreased

speaking rate increased burst amplitude in plosives.

Accordingly, aging-related change in speaking rate may

generate more instances of that qualify for burst landmarks.

Consequently, we hypothesize an increase in burst land-

marks among older adults.

III. METHODS

A. Description of speakers/speech stimuli

The speech data utilized in this study were a subset

sourced from the University of Florida Vocal Aging

Database (UF-VAD) (Harnsberger et al., 2008, 2010; Spiegl

et al., 2009), which comprises recordings of American

English spanning the years 2003–2007. Stimulus materials

consisted of a diverse set of speech samples read by 50 indi-

viduals in three distinct age groups: chronologically young

(18–30 years), middle-aged (40–55 years), and older adults

(62–92 years). Each age group comprised 25 male and 25

female speakers/talkers (Table II). The speech samples

included “The Rainbow Passage” (Fairbanks, 1960), “The

Grandfather Passage” (Van Riper, 1963), 16 sentences taken

or adapted from the Speech Perception in Noise test (SPIN)

sentences (Bilger et al., 1979, 1984), three sustained vowels

([a], [i], and [u]), and two diadodes ([/pat@k@/], [/S@pupi/]).

SPIN sentences are standardized speech stimuli commonly

used in hearing research (e.g., Wong et al., 2009). For this

database, no noise was added to the recordings. Recordings

were made in a quiet environment using a head-worn micro-

phone (Shure SM10A, Shure Inc., Niles, IL) fixed at a con-

stant distance from the corner of the mouth. All recordings,

captured on a Sony DAT recorder (Sony Corp, Tokyo,

Japan), were later transferred to a computer for analysis

(sampling rate¼ 22.05 kHz; quantization¼ 16 bits). The

entire collection of 150 normal voices is referred to as the

UF-VAD. A list of 16 SPIN sentences was used for the cur-

rent study (the Appendix).

B. Landmark extraction

The SpeechMark
VR

MATLAB Toolbox Ver 1.1.2 was

used for landmark-based analysis (Fig. 1). Following the soft-

ware’s guidelines, the speech recordings were downsampled

to 16 kHz. Additionally, the frequency limit for the high-pass

filter was set at 75 Hz, the standard setting for adult speakers.

The maximum fundamental frequency limit was adjusted to

220 Hz for male speakers and 350 Hz for female speakers.

Due to redundancy in the detection algorithm, voiced and

unvoiced fricative landmarks occur less frequently than

glottal, burst, and syllabic landmarks (Ishikawa et al., 2017).

Therefore, although all types of landmarks were generated,

this study’s analysis predominantly focused on the three most

frequently occurring landmarks: glottal [g], burst [b], and syl-

labic [s] onset and offset landmarks. The counts of landmarks

were obtained from the 16 sentences for each speaker and

were then used as the dependent variable in the statistical

models.

C. Statistical method

The acoustic values were obtained for each sentence

and then averaged across 16 sentences for each speaker. To

assess the effects of two independent variables (age and sex)

on the dependent variable (the count of each landmark), a

two-way analysis of variance (ANOVA) was utilized. The

interaction between age and sex was also evaluated. When

the model indicated significant effects of age and/or sex on

the landmark count, pairwise t-tests were conducted. These

tests were aimed at investigating differences in the landmark

count across different age groups, stratified by sex, and

across different sexes, stratified by age. The p-values from

these tests were adjusted using the Bonferroni method to

account for multiple comparisons. The effect sizes were

computed as partial eta-squared. The effects were consid-

ered trivial (<0.01), small (0.01-0.06), medium/moderate

TABLE II. Mean, minimum (min), and maximum (max) chronological

ages for males and females in each age group of the UF-VAD.

Talker group and sex

Chronologic age (years)

Mean Min Max

Young

Male 22 18 29

Female 20 18 24

Middle

Male 49 41 55

Female 48 40 55

Older

Male 78 62 92

Female 79 65 89
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(>0.06–0.14), or large (>0.14) (Richardson, 2011). All sta-

tistical analyses were conducted with R version 2022.07.1

(R Studio Team, 2022).

IV. RESULTS

A descriptive statistics of the landmark count is dis-

played in Table III.

A. Glottal onset landmarks

The result of two-way ANOVA indicated a significant

effect of age on [þg] [F(2, 144)¼ 3.958, p¼ 0.021, gp
2

¼ 0.051.] The effect of sex on [þg] was not statistically sig-

nificant [F(1, 144)¼ 3.294, p¼ 0.072, gp
2 ¼ 0.021]. The

interaction between age and sex was not significant [F(2,

144)¼ 0.203, p¼ 0.816, gp
2¼ 0.003]. A series of pairwise

t-tests with Bonferroni correction across three age groups

indicated that there was no significant difference in the mean

levels of the dependent variable between the middle-aged

and older groups, t(49)¼ –1.39, padj¼ 0.516 and between the

middle-aged and young groups, t(49)¼ 1.41, padj¼ 0.498.

However, there was a significant difference between the older

and young groups, t(49)¼ 2.83, padj¼ 0.020 (Fig. 2).

B. Glottal offset landmarks

The result of the two-way ANOVA indicated a significant

effect of age on [�g] [F(2, 144)¼ 4.004, p¼ 0.0203, gp
2

¼ 0.051]. The effect of sex on [�g] was not statistically signif-

icant [F(1, 144)¼ 3.472, p¼ 0.0645, gp
2¼ 0.022]. The interac-

tion between age and sex on [�g] was also not significant

[F(2, 144)¼ 0.193, p¼ 0.8248, gp
2 ¼ 0.002]. A series of pair-

wise t-tests with Bonferroni correction across three age groups

indicated that there was no significant difference in the mean

levels of the dependent variable [�g] between the middle-aged

and older groups [t(49)¼ –1.40, padj¼ 0.507] and between the

middle-aged and young groups [t(49)¼ 1.41, padj¼ 0.495].

However, there was a significant difference between the older

and young groups [t(49)¼ 2.84, padj¼ 0.019], indicating that

the mean levels of [�g] significantly differed between these

age groups (Fig. 2).

C. Burst onset landmark

The result of the two-way ANOVA revealed a signifi-

cant effect of age on [þb] [F(2, 144)¼ 4.755, p¼ 0.010, gp
2

¼ 0.058]. Additionally, the effect of sex on [þb] was found

to be statistically significant [F(1, 144)¼ 7.702, p¼ 0.006,

gp
2 ¼ 0.047]. The interaction between age and sex, however,

did not reach statistical significance [F(2, 144)¼ 1.474,

p¼ 0.233, gp
2 ¼ 0.018], indicating that the combined effect

of age and sex does not significantly influence [þb].

For the analysis stratified by sex, the pairwise t-tests

among females showed no significant difference in [þb]

between the middle-aged and older groups [t(24)¼ –0.074,

padj¼ 1.000]. However, significant differences were observed

between the young and middle-aged groups [t(24)¼ 3.41,

padj¼ 0.007], and between the young and older groups

[t(24)¼ 3.32, padj¼ 0.009], indicating that age significantly

affects [þb] in females. For males, no significant differences

were found in [þb] across all age group comparisons: middle-

aged vs older [t(24)¼ 0.725, padj¼ 1.000], young vs middle-

aged [t(24)¼ 1.08, padj¼ 0.873], and young vs older

[t(24)¼ 0.646, padj¼ 1.000].

For the analysis stratified by age, the pairwise t-tests

revealed no significant differences in [þb] between females

and males in the middle-aged [t(24)¼ –1.32, padj¼ 0.200]

and older [t(24)¼ –0.633, padj¼ 0.533] groups. However, a

significant difference was observed in the young group, with

females showing a significantly different score in [þb] com-

pared to males [t(24)¼ –3.22, padj¼ 0.004] (Fig. 3).

TABLE III. Average, standard deviation (SD), standard error (SE), and

confidence interval (CI) of all landmark counts.

Age Sex N Average count SD SE CI

[þg]

Young Female 25 94.56 8.01 1.60 3.30

Middle-aged Female 25 96.36 8.76 1.75 3.62

Older Female 25 99.56 11.79 2.36 4.87

Young Male 25 96.24 12.75 2.55 5.26

Middle-aged Male 25 100.36 10.22 2.04 4.22

Older Male 25 103.84 14.35 2.87 5.92

[�g]

Young Female 25 94.44 7.98 1.60 3.29

Middle-aged Female 25 96.24 8.60 1.72 3.55

Older Female 25 99.52 11.74 2.35 4.85

Young Male 25 96.24 12.75 2.55 5.26

Middle-aged Male 25 100.36 10.22 2.04 4.22

Older Male 25 103.80 14.38 2.88 5.93

[þb]

Young Female 25 75.36 9.02 1.80 3.72

Middle-aged Female 25 84.20 11.06 2.21 4.57

Older Female 25 84.44 12.81 2.56 5.29

Young Male 25 84.52 12.30 2.46 5.08

Middle-aged Male 25 88.20 9.23 1.85 3.81

Older Male 25 86.24 11.04 2.21 4.56

[�b]

Young Female 25 46.56 7.82 1.56 3.23

Middle-aged Female 25 56.68 13.86 2.77 5.72

Older Female 25 67.04 13.32 2.66 5.50

Young Male 25 69.80 16.75 3.35 6.92

Middle-aged Male 25 75.40 15.14 3.03 6.25

Older Male 25 73.44 11.76 2.35 4.85

[þs]

Young Female 25 42.92 7.76 1.55 3.20

Middle-aged Female 25 38.32 12.68 2.54 5.23

Older Female 25 40.20 13.97 2.79 5.77

Young Male 25 24.48 8.40 1.68 3.47

Middle-aged Male 25 26.56 8.20 1.64 3.38

Older Male 25 34.20 14.31 2.86 5.91

[�s]

Young Female 25 60.36 7.80 1.56 3.22

Middle-aged Female 25 52.64 12.61 2.52 5.20

Older Female 25 51.72 11.90 2.38 4.91

Young Male 25 34.08 10.85 2.17 4.48

Middle-aged Male 25 32.20 11.62 2.32 4.80

Older Male 25 41.68 13.88 2.78 5.73
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D. Burst offset landmark

The result of the two-way ANOVA revealed a statisti-

cally significant effect of age on [�b] [F(2, 144)¼ 10.422,

p< 0.001, gp
2 ¼ 0.091]. The effect of sex on [�b] was also

found to be significant [F(1, 144)¼ 54.198, p< 0.001, gp
2

¼ 0.236], suggesting that sex is a significant predictor of

[�b]. Additionally, the interaction between age and sex was

significant [F(2, 144)¼ 5.281, p< 0.001, gp
2 ¼ 0.046], indi-

cating that the effect of age on [�b] varies by sex.

For the analysis stratified by sex, the pairwise t-tests

among females indicated that there was no significant differ-

ence in [�b] between the middle-aged and older groups

[t(24)¼ –2.47, padj¼ 0.063]. However, significant differences

were observed between the young and middle-aged groups

[t(24)¼ 3.04, padj¼ 0.017], and between the young and older

groups [t(24)¼ 6.58, padj < 0.001]. For males, no significant

differences were found in [�b] across the three age group

comparisons: middle-aged vs older [t(24)¼ 0.517, padj¼ 1.00],

young vs middle-aged [t(24)¼ 1.32, padj¼ 0.594], and young

vs older [t(24)¼ 0.982, padj¼ 1.00].

For the analysis stratified by age, the pairwise t-tests

indicated significant differences in [�b] between females

and males within the young [t(24)¼ –6.63, padj < 0.001]

and middle-aged [t(24)¼ –4.68, padj < 0.001] groups, with

females showing significantly greater number of [�b] com-

pared to males. However, no significant difference was

observed between females and males in the older age group

[t(24)¼ –1.81, padj¼ 0.084] (Fig. 3).

E. Syllabicity onset landmark

The result of the two-way ANOVA revealed that the

effect of age on [þs] was not statistically significant [F(2,

144)¼ 2.406, p¼ 0.0938, gp
2 ¼ 0.024]. On the other hand,

the effect of sex on [þs] was significant [F(1,

144)¼ 43.193, p< 0.001, gp
2 ¼ 0.216]. Additionally, the

interaction between age and sex was significant [F(2,

144)¼ 3.833, p¼ 0.024, gp
2 ¼ 0.038], indicating that the

effect of age on [þs] varies depending on sex (Fig. 4).

For the analysis stratified by sex for [þs], the pairwise

t-tests showed no significant differences among females

across all age group comparisons: middle-aged vs older

[t(24)¼ –0.540, padj¼ 1.000], middle-aged vs young

[t(24)¼ –1.55, padj¼ 0.405], and older vs young

[t(24)¼ –0.843, padj¼ 1.000]. In males, no significant dif-

ferences were observed between the middle-aged and older

groups [t(24)¼ –2.42, padj¼ 0.07], and between the young

and middle-aged groups [t(24)¼ 0.888, padj¼ 1.000].

However, a significant difference was found between the

young and older groups [t(24)¼ 3.23, padj¼ 0.011].

For the analysis stratified by age for [þs], the pairwise

t-tests indicated significant differences between females and

males in the middle-aged [t(24)¼ 3.95, padj < 0.001] and

young [t(24)¼ 7.52, padj < 0.001] groups. However, no sig-

nificant difference was observed between females and males

in the older age group [t(24)¼ 1.32, padj¼ 0.201].

F. Syllabicity offset landmark

The result of the two-way ANOVA revealed that the

effect of age on [�s] was not statistically significant [F(2,

144)¼ 2.580, p¼ 0.0793, gp
2 ¼ 0.020]. In contrast, the

effect of sex on [�s] was significant [F(1, 144)¼ 99.837,

p< 0.001, gp
2 ¼ 0.382]. Additionally, the interaction

between age and sex was statistically significant [F(2,

144)¼ 6.291, p¼ 0.0024, gp
2 ¼0.048], indicating that the

effect of age on [�s] varies depending on sex.

For the analysis stratified by sex for [�s], the pairwise

t-tests among females showed no significant differences

between the middle-aged and older groups [t(24)¼ 0.263,

padj¼ 1.000] and between the middle-aged and young

groups [t(24)¼ –2.38, padj¼ 0.077]. However, a significant

difference was found between the older and young groups

[t(24)¼ –2.91, padj¼ 0.023]. In males, a significant differ-

ence was observed between the middle-aged and older

groups [t(24)¼ –2.80, padj¼ 0.030], suggesting that age

influences [�s] between these two groups. No significant

differences were found between the middle-aged and young

FIG. 2. (Color online) Line plot dis-

playing the average counts of [þg] and

[�g] landmarks, with error bars repre-

senting the standard errors. An asterisk

indicates a pair with statistically signif-

icant difference.
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groups [t(24)¼ –0.637, padj¼ 1.000] and between the older

and young groups [t(24)¼ 2.32, padj¼ 0.088].

For the analysis stratified by age for [�s], the pairwise

t-tests revealed significant difference between females and

males across all age groups [t(24)¼ 9.96, padj < 0.001 for

the young group; t(24)¼ 6.96, padj < 0.001 for the middle-

age group; t(24)¼ 6.96, padj < 0.001 for the older group]

(Fig. 4).

V. DISCUSSION

This study examined the feasibility of detecting age-

related changes in speech acoustics using the LMBAS. The

results showed that the age affects expression of glottal and

burst landmarks but not syllabicity landmarks. In contrast,

the effect of sex was statistically significant for burst and

syllabicity landmarks, but not significant for glottal land-

marks. The interaction between age and sex was significant

for burst offset landmark as well as syllabicity onset and off-

set landmarks.

The results of glottal landmarks corroborated our

hypothesis: the count of [þg] and [�g] increased with age.

However, the effect was small, and the difference was only

seen between young and older groups. The lack of differ-

ence between young and middle-aged, and middle-aged and

older groups implies that the functional changes in the vocal

folds is more discernible across a wider age spectrum. The

observed differences echo patterns noted in a large cohort

study (Davids et al., 2012), which reported the increasing

prevalence of vocal fold atrophy among patients over 65

years, a demographic closely aligning with our older group.

The greater number of glottal landmarks in a population

with a physiological change in vocal fold tissue aligns with

observations from previous studies on dysphonic speech

(Ishikawa et al., 2020).

Given previous reports highlighting differences in vocal

fold vibratory characteristics between males and females,

such as variations in the size and position of the glottal gap

and vocal fold vibratory asymmetry, it might be reasonable

to anticipate discernible effects of sex and the interaction

FIG. 3. (Color online) Line plot dis-

playing the average counts of [þb] and

[�b] landmarks, with error bars repre-

senting the standard errors. An asterisk

indicates a pair with statistically signif-

icant difference.

FIG. 4. (Color online) Line plot dis-

playing the average counts of [þs] and

[�s] landmarks, with error bars repre-

senting the standard errors. An asterisk

indicates a pair with statistically signif-

icant difference.
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between age and sex on glottal landmarks. However, acous-

tic studies have not consistently demonstrated these effects

on periodicity (Buckley et al., 2023; Stathopoulos et al.,
2011; Taylor, 2020). The absence of observed effects of sex

or its interaction with age in our findings aligns with those

studies that similarly did not observe them, suggesting a

relationship between sex, age, and acoustic periodicity that

may not be readily captured. This could also be attributed to

the enhanced complexity of the SpeechMark
VR

algorithm

compared to conventional methodologies, or its capability

to tailor speech analysis according to the sex of the speech

sample. Additionally, it is possible that males and females

in this database exhibited negligible differences in their

vocal fold physiology.

As predicted, age significantly increased the count of

[þb] and [�b]; however, this effect was small to medium,

and was observed only in females. Both glottal and burst

landmarks demonstrated this age-related increase, sugges-

ting that mechanisms. such as glottal noise, akin to those

observed in dysphonic speakers (Ishikawa et al., 2020), may

play a role in the enhanced detection of burst landmarks

among older speakers. The results also reveal complex pat-

terns between sexes and across different age groups. It was

anticipated that younger speakers would produce fewer burst

landmarks due to their generally faster speech rate

(Jacewicz et al., 2009). This pattern was observed in young

females who produced fewer burst landmarks compared to

both middle-aged and older females. Previous studies have

indicated that males generally speak faster than females

(Jacewicz et al., 2009; Verhoeven et al., 2004), leading to

the expectation that they might produce fewer burst land-

marks due to a faster speech rate. Contrary to this expecta-

tion, however, the young male group generated more burst

onset landmarks compared to the young female group.

Results of the current study challenge the assumptions based

on vocal fold atrophy and speech rate alone, suggesting that

additional factors influence burst landmark production.

Contrary to our hypothesis, which predicted a decrease

in syllabicity landmarks with aging, this effect was seen

only from young to older females for [�s]. Aging did not

affect [þs] for female speakers, and a significant increase

was observed from young to older males for [þs] and

middle-aged to older males for [�s]. On the contrary, the

effect of sex was significant and large. Sex impacted the

generation of [þs] and [�s] across the middle-aged and

young age groups, with a greater number of these landmarks

in females compared to males. In contrast, the older age

group did not exhibit significant sex-related differences in

[þs]. The age-related increase in the syllabicity landmarks

may be associated with the age-related increase in glottal

landmarks as syllabicity landmarks are detected between

glottal onset and offset landmarks. The lack of sex differ-

ence in the older group may support a notion of convergence

in voice characteristics that occurs over lifetime, though this

convergence has been described primarily based on funda-

mental frequency (Decoster and Debruyne, 1997; Mysak,

1959; Nishio and Niimi, 2008).

Interestingly, [�s] occurred more frequently than [þs]

in the current study, which contrasts with the findings of an

earlier study by Ishikawa et al. (2017). In their research,

which characterized normal adult speakers, [þb] and [þs]

landmarks were observed to occur more frequently than

[�b] and [�s]. The difference in the frequency of occur-

rence between [þs] and [�s] was attributed to the fact that

while the acoustic rules for detecting these landmarks are

symmetrically designed, the actual acoustic changes elicited

by articulatory adjustments are not symmetric. This discrep-

ancy between our study and the previous report could be

attributed to differences in the phonetic context of the sen-

tences used. The SPIN sentences cover a broader range of

speech sounds and contexts compared to two sentences from

the Rainbow passage used in Ishikawa et al. (2017). Thus,

the choice of material for analysis–particularly in terms of

its phonetic diversity–may be a critical factor in determining

the frequency and distribution of specific landmarks in

speech.

Regarding the effect sizes, our analysis revealed small

to medium effect sizes (ranging from 0.02 to 0.09) for age

and small to very large effect sizes for sex (ranging from

0.02 to 0.38). The interaction between age and sex consis-

tently showed small effect sizes across landmarks. However,

we are unable to compare our results with previous reports

as the effect sizes were not reported. This limits direct quan-

titative comparisons, but the small effect size of age high-

lights the importance of having large sample sizes to obtain

more reliable and generalizable results. The practical impli-

cation of our findings is still noteworthy. While some effect

sizes observed in our study are small, they may still be prac-

tically significant, depending on the context. Small effect

sizes may lead to meaningful differences in real-world

applications, particularly in fields such as speech pathology

(Bothe and Richardson, 2011; Gaeta and Brydges, 2020).

Limitations of this work include the requirement of

SpeechMark
VR

software to downsample stimuli to 16 kHz,

leading to the loss of information above 8 kHz. The current

study used the age function of SpeechMark
VR

, which allows

control for the sex (male vs female) of a speaker based on

fundamental frequency. An increase in syllabicity land-

marks with age was unexpected, potentially indicating the

need for refinements to the algorithm. Furthermore, while

samples of the current study were controlled for the phonetic

context, the use of sentence reading samples limits the gen-

eralizability of results to everyday speech environments.

Last, while the speakers included in the database were

deemed to be normal based on self-reports, additional

screening measures (through routine clinical examinations,

perception. or imaging) were not conducted to verify their

physiological status.

VI. CONCLUSION AND SCOPE OF FUTURE WORK

The current study has shown that age and sex of speak-

ers affect landmark generation, demonstrating the potential

utility of investigating speech production changes with
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aging using the landmark-based approach. The results also

provide a baseline description of landmark expression in

healthy aging speech, offering foundational knowledge for

future research. Future studies comparing the magnitude of

age and sex effects from landmark-based analysis and con-

ventional acoustic measures on the same dataset may pro-

vide more insight into the utility of landmark-based

analysis. By its design, this study was not configured to

delineate the underlying causes of the observed changes.

However, confirming these changes prompts further investi-

gation to elucidate the relationship between specific articula-

tory variables and their corresponding landmarks. Such

knowledge will be instrumental in guiding subsequent stud-

ies extending to disordered populations, including condi-

tions more prevalent in older populations, such as

Parkinson’s disease, further enhancing the clinical and

research utility of the landmark-based approach.
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APPENDIX: SPEECH PERCEPTION IN NOISE [(SPIN)
SENTENCES (SS fi SPIN SENTENCE]

ss01: His boss made him work like a slave.

ss02: He caught the fish in his net.

ss03: The beer drinkers raised their mugs.

ss04: I made the phone call from a booth.

ss05: The cut on his knee formed a scab.

ss06: I gave her a kiss and a hug.

ss07: The soup was served in a bowl.

ss08: The cookies were kept in a jar.

ss09: The baby slept in his crib.

ss10: The cop wore a bullet proof vest.

ss11: How long can you hold your breath?

ss12: At breakfast he drank some juice.

ss13: I ate a piece of chocolate fudge.

ss14: The judge is sitting on the bench.

ss15: The boat sailed along the coast.

ss16: The pirates buried the treasure.
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